Método de Newton
Vea también: Prueba Alfa, Cero Aproximado, Punto Fijo, Fórmula Irracional de Halley, Método de Halley, Método de Horner, Método de Householder, Método de Laguerre, Iteración de Newton, Campo Vectorial Newtoniano, Algoritmo de Búsqueda de Raíces
Abramowitz, M. y Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Nueva York: Dover, p. 18, 1972.
Acton, F. S. Ch. 2 in NumericalMethods That Work. Washington, DC: Math. Assoc. Amer., 1990.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 963-964, 1985.
Boyer, C. B. y Merzbacher, U. C. AHistory of Mathematics, 2nd ed. Nueva York: Wiley, 1991.
Dickau, R. M. «Basins of Attraction for Using Newton’s Method in the Complex Plane». https://mathforum.org/advanced/robertd/newtons.html.
Dickau, R. M. «Variations on Newton’s Method.» https://mathforum.org/advanced/robertd/newnewton.html.
Dickau, R. M. «Compilación de operaciones iterativas y de lista». MathematicaJ. 7, 14-15, 1997.
Gleick, J. Chaos: Making a New Science. New York: Penguin Books, lámina 6 (después de la p. 114) y p. 220, 1988.
Gourdon, X. y Sebah, P. «Newton’s Iteration». https://numbers.computation.free.fr/Constants/Algorithms/newton.html.
Householder, A. S. Principlesof Numerical Analysis. New York: McGraw-Hill, pp. 135-138, 1953.
Mandelbrot, B. B. TheFractal Geometry of Nature. San Francisco, CA: W. H. Freeman, 1983.
Newton, I. Methodus fluxionum et serierum infinitarum. 1664-1671.
Ortega, J. M. y Rheinboldt, W. C. Iterative Solution of Nonlinear Equations in Several Variables. Philadelphia, PA: SIAM, 2000.
Peitgen, H.-O. y Saupe, D. TheScience of Fractal Images. New York: Springer-Verlag, 1988.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; y Vetterling, W. T. «Newton-Raphson Method Using Derivatives» y «Newton-Raphson Methods for Nonlinear Systems of Equations». §9.4 y 9.6 en Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge, Inglaterra. Cambridge, Inglaterra: Cambridge University Press, pp. 355-362 y 372-375, 1992.
Ralston, A. y Rabinowitz, P. §8.4 in AFirst Course in Numerical Analysis, 2nd ed. New York: McGraw-Hill, 1978.
Raphson, J. Analysis aequationum universalis. Londres, 1690.
Smale, S. «On the Efficiency of Algorithms of Analysis». Bull. Amer.Math. Soc. 13, 87-121, 1985.
Varona, J. L. «Graphic and Numerical Comparison Between Iterative Methods. «Math. Intell. 24, 37-46, 2002.
Whittaker, E. T. y Robinson, G. «The Newton-Raphson Method». §44 en The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 84-87, 1967.