Metodo di Newton
Vedi anche: Alpha-Test, zero approssimato, punto fisso, formula irrazionale di Halley, metodo di Halley, metodo di Horner, metodo di Householder, metodo di Laguerre, iterazione di Newton, campo vettoriale newtoniano, algoritmo di ricerca delle radici
Abramowitz, M. e Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 18, 1972.
Acton, F. S. Ch. 2 in NumericalMethods That Work. Washington, DC: Math. Assoc. Amer., 1990.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 963-964, 1985.
Boyer, C. B. and Merzbacher, U. C. AHistory of Mathematics, 2nd ed. New York: Wiley, 1991.
Dickau, R. M. “Bacini di attrazione per usando il metodo di Newton nel piano complesso.” https://mathforum.org/advanced/robertd/newtons.html.
Dickau, R. M. “Variazioni sul metodo di Newton”. https://mathforum.org/advanced/robertd/newnewton.html.
Dickau, R. M. “Compilazione di operazioni iterative e di liste”. MathematicaJ. 7, 14-15, 1997.
Gleick, J. Chaos: Making a New Science. New York: Penguin Books, piatto 6 (dopo p. 114) e p. 220, 1988.
Gourdon, X. e Sebah, P. “Newton’s Iteration.” https://numbers.computation.free.fr/Constants/Algorithms/newton.html.
Householder, A. S. Principlesof Numerical Analysis. New York: McGraw-Hill, pp. 135-138, 1953.
Mandelbrot, B. B. TheFractal Geometry of Nature. San Francisco, CA: W. H. Freeman, 1983.
Newton, I. Methodus fluxionum et serierum infinitarum. 1664-1671.
Ortega, J. M. e Rheinboldt, W. C. Iterative Solution of Nonlinear Equations in Several Variables. Philadelphia, PA: SIAM, 2000.
Peitgen, H.-O. and Saupe, D. TheScience of Fractal Images. New York: Springer-Verlag, 1988.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. “Newton-Raphson Method Using Derivatives” e “Newton-Raphson Methods for Nonlinear Systems of Equations”. §9.4 e 9.6 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, Inghilterra: Cambridge University Press, pp. 355-362 e 372-375, 1992.
Ralston, A. and Rabinowitz, P. §8.4 in AFirst Course in Numerical Analysis, 2nd ed. New York: McGraw-Hill, 1978.
Raphson, J. Analysis aequationum universalis. London, 1690.
Smale, S. “On the Efficiency of Algorithms of Analysis.” Bull. Amer.Math. Soc. 13, 87-121, 1985.
Varona, J. L. “Confronto grafico e numerico tra metodi iterativi”. Intell. 24, 37-46, 2002.
Whittaker, E. T. e Robinson, G. “Il metodo Newton-Raphson”. §44 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 84-87, 1967.