Articles

Metoda Newtona

Zobacz także: Alpha-Test, Approximate Zero, Fixed Point, Halley’s Irrational Formula, Halley’s Method, Horner’s Method, Householder’s Method, Laguerre’s Method, Newton’s Iteration, Newtonian Vector Field, Root-Finding Algorithm

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, s. 18, 1972.

Acton, F. S. Ch. 2 in NumericalMethods That Work. Washington, DC: Math. Assoc. Amer., 1990.

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 963-964, 1985.

Boyer, C. B. and Merzbacher, U. C. AHistory of Mathematics, 2nd ed. New York: Wiley, 1991.

Dickau, R. M. „Basins of Attraction for z^5=1 Using Newton’s Method in the Complex Plane.” https://mathforum.org/advanced/robertd/newtons.html.

Dickau, R. M. „Variations on Newton’s Method.” https://mathforum.org/advanced/robertd/newnewton.html.

Dickau, R. M. „Compilation of Iterative and List Operations.” MathematicaJ. 7, 14-15, 1997.

Gleick, J. Chaos: Making a New Science. New York: Penguin Books, tablica 6 (po s. 114) i s. 220, 1988.

Gourdon, X. and Sebah, P. „Newton’s Iteration.” https://numbers.computation.free.fr/Constants/Algorithms/newton.html.

Householder, A. S. Principlesof Numerical Analysis. New York: McGraw-Hill, s. 135-138, 1953.

Mandelbrot, B. B. TheFractal Geometry of Nature. San Francisco, CA: W. H. Freeman, 1983.

Newton, I. Methodus fluxionum et serierum infinitarum. 1664-1671.

Ortega, J. M. and Rheinboldt, W. C. Iterative Solution of Nonlinear Equations in Several Variables. Philadelphia, PA: SIAM, 2000.

Peitgen, H.-O. and Saupe, D. TheScience of Fractal Images. New York: Springer-Verlag, 1988.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. „Newton-Raphson Method Using Derivatives” and „Newton-Raphson Methods for Nonlinear Systems of Equations.” §9.4 i 9.6 w Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, s. 355-362 i 372-375, 1992.

Ralston, A. and Rabinowitz, P. §8.4 in AFirst Course in Numerical Analysis, 2nd ed. New York: McGraw-Hill, 1978.

Raphson, J. Analysis aequationum universalis. London, 1690.

Smale, S. „On the Efficiency of Algorithms of Analysis.” Bull. Amer.Math. Soc. 13, 87-121, 1985.

Varona, J. L. „Graphic and Numerical Comparison Between Iterative Methods. „Math. Intell. 24, 37-46, 2002.

Whittaker, E. T. and Robinson, G. „The Newton-Raphson Method.” §44 w The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, s. 84-87, 1967.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *